
Cyber Security AIxCC 본선 지원, 2024.11.~2025.08. : 미국 고등국방연구계획국 DARPA 주관, 오픈소스 프로젝트 취약점 발굴 자동화 시스템 개발 경연 대회 R&R: 보안 자동화 연구원, 취약점 발굴 자동화에 관한 연구...
Diffusion: Ho et al., 2020, arXiv:2006.11239 WaveGrad: Nanxin Chen et al.
read moreDavid Bau et al., 2020, arXiv Keyword: Generative, Adversarial learning Problem: How to manipulate specific rules encoded by a deep generative model.
read moreStanislav Pidhorskyi et al., 2020, arXiv Keyword: Generative, Adversarial learning Problem: AE based approach has poor quality of output distribution.
read moreHyunjik kim et al., 2019, arXiv Keyword: Bayesian, Process Problem: Underfitting of Neural Process Solution: NP + Self-Attention, Cross-Attention Benefits: Improvement of prediction accuracy, training speed, model capability.
read moreMarta Garnelo et al., 2018, arXiv Keyword: Bayesian, Process Problem: Data inefficiency, hard to train multiple datasets in one.
read moreMarta Garnelo et al., 2018, arXiv Keyword: Bayesian, Process Problem: Weakness of knowledge sharing and data inefficiency of classical supervised learning Solution: Stochastic Process + NN Benefits: Data efficient, prior sharing Contribution: Encapsulation of parameterized NN function family.
read more